lectures
Detail
Publication date: 1 de June, 2021DI FCT UNL – NOVA LINCS DISTINGUISHED LECTURE 2016
Abstract
Digital computers allow us to manipulate information systematically, leading to recent advances in our ability to structure our society and to communicate in richer ways. They also allow us to orchestrate physical forces, transforming and optimizing our manufacturing processes. What they cannot do very well, is to interact directly with biological organisms or in general orchestrate molecular arrangements. Thanks to biotechnology, nucleic acids (DNA/RNA) are particularly effective ‘user-programmable’ entities at the molecular scale. They can be directed to assemble nano-scale structures, to produce physical forces, to act as sensors and actuators, and to do general computation in between. We will be able to interface them with biological machinery to detect and cure diseases at the cellular level under program control. The theory of computability directed the design of digital computers, and it can now inform the development of new computational fabrics, at the molecular level, that will eventually give us control of an entirely new domain of reality.
Bio
Luca Cardelli has a Ph.D. in computer science from the University of Edinburgh. He worked at Bell Labs, Murray Hill, from 1982 to 1985, and at Digital Equipment Corporation, Systems Research Center in Palo Alto, from 1985 to 1997, before assuming a position at Microsoft Research, in Cambridge UK, where he was head of the Programming Principles and Tools and Security groups until 2012. Since 2014 he is also a Royal Society Research Professor at the University of Oxford.
His main interests are in programming languages and concurrency, and more recently in programmable biology and nanotechnology. He is a Fellow of the Royal Society, a Fellow of the Association for Computing Machinery, an Elected Member of the Academia Europaea, and an Elected Member of the Association Internationale pour les Technologies Objets.
Date | 28/09/2016 |
---|